Seismic Field Tests of a Distributed Acoustic Sensor
Ключевые слова:
DAS, fading, suppression, OTDR, petroleum geophysics, vibration analysis, подавление затухания, нефтяная геофизика, анализ вибрацийАннотация
This research is some contribution to advancing acoustic sensing, offering long-range monitoring of boreholes. High sensitive distributed acoustic sensor is required in oil and gas exploration, pipeline detection, and various practical applications. In this paper, a high sensitive quasi distributed acoustic sensor was tested in borehole. The waveforms are presented and distributed audio signal and spatial acoustic imaging are demonstrated. The field test results of the sound detection illustrate a good sensitivity within the flat frequency range up to 5 kHz up to 900 m depth. The partial results obtained further developments and applications in various fields.
Ссылка для цитирования: I. Ershov and O. Stukach, «Seismic Field Tests of a Distributed Acoustic Sensor», Systems Engineering and Infocommunications, No. 1, pp. 17–21, Mar. 2025, doi: 10.5281/zenodo.15110964.
Библиографические ссылки
J.C. Juarez, E.W. Maier et al, "Distributed fiber-optic intrusion sensor system," Journal of Lightwave technology, 2005, no. 23(6), p. 2081.
Q. Liu, X. Fan, and Z. He, "Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range," Opt. Express, 2015, no. 23(20), pp. 25988-25995.
O.V. Stukach, I.A. Ershov, I.V. Sychev, “Towards the Distributed Temperature Sensor with Potential Characteristics of Accuracy”, 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), October 2-6, 2018, Novosibirsk, Russia. DOI: 10.1109/APEIE.2018.8546271.
D. Chen, Q. Liu, X. Fan, and Z. He, "Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio," Journal of Lightwave technology, 2017, no. 35(10), pp. 2037-2043.
R.Zh. Aimagambetova, A.D. Mekhtiyev, O.V. Stukach, "Experimental Studies of Laboratory Samples of Fiber-Optic Sensors within Reinforced Concrete Building Construction. Part 1: Overview", International Seminar on Electron Devices Design and Production (SED), 2024 October 02-03, Sochi, Russian Federation, Publisher: IEEE. DOI: 10.1109/SED63331.2024.10741063.
R.Z. Aimagambetova, A.D. Mekhtiyev, O.V. Stukach, "Experimental Studies of Laboratory Samples of Fiber-Optic Sensors within Reinforced Concrete Building Construction. Part 2: The Experiment," Dynamics of Systems, Mechanisms and Machines (Dynamics), 2024, 12-14 Nov., Omsk, Russian Federation, pp. 1-8, DOI: 10.1109/Dynamics64718.2024.10838662.
I.A. Ershov, O.V. Stukach and R.Z. Aimagambetova, "The Peculiar Measure Identifying of the Temperature Leap in the Distributed Raman Sensors", Dynamics of Systems, Mechanisms and Machines (Dynamics), 2021, 9-11 Nov., Omsk, Russian Federation, pp. 1-4, doi: 10.1109/Dynamics52735.2021.9653721.
Q. Sun, C. Fan, H. Li et al, “Progress of research on optical fiber distributed acoustic sensing technology in petroleum industry”, Geophysical Prospecting for Petroleum. 2022, no. 61(1), pp. 50-59, DOI: 10.3969/j.issn.1000-1441.2022.01.005.
H. Wu, Z. Chen, L. Lv, et al, “Novel pressurized water pipe leak monitoring method based on the distributed optical fiber vibration sensor”, Chin. J. Sci. Instrum. 2017, no. 38(1), pp. 159-165, DOI: 10.19650/j.cnki.cjsi.2017.01.0 21.
J. Tejedor, J.M. Guarasa, H.F. Martins, et al, “A contextual GMM-HMM smart fiber optic surveillance system for pipeline integrity threat detection”, Journal of Lightwave Technol., 2019, no. 37(18), pp. 4514-45225, DOI: 10.1109/JLT.2019.2908816.
F. Ma, X. Wang, Y. Wang, R. Zhu, Z. Yuan et al, "An improved device and demodulation method for fiber-optic distributed acoustic sensor based on homodyne detection", Optical Fiber Technology, 71(2022), p. 102925, DOI: 10.1016/j.yofte.2022.102925.
Y. Wang, J. Wang, Y. Fan, Y. Gao et al, "Interference fading suppression for distributed acoustic sensor using frequency-shifted delay loop", Optics & Laser Technology 171(2024), p. 110441, DOI: 10.1016/j.optlastec.2023.110441.
D.F. Gomes, G.H. Weber, D.R. Pipa, M.J. Silva et al., “DAS Transducer for Enhanced Acoustic Sensitivity”, IEEE Sensors Letters, 2023, vol. 7, no. 9, p. 5001204, DOI: 10.1109/LSENS.2023.3309262.
H. Li, Q. Sun, T. Liu, C. Fan, et al, "Ultra-High Sensitive Quasi-Distributed Acoustic Sensor Based on Coherent OTDR and Cylindrical Transducer", Journal of lightwave technology, 2020, vol. 38, no. 4, February 15, pp. 929-938, DOI: 10.1109/JLT.2019.2951624.
D.F. kandamali, X. Cao, M. Tian, Z. Jin, et al, “Machine learning methods for identification and classification of events in phi-OTDR systems: a review”, Appl. Optics, 2022, no. 61(11), pp. 2975-2997., DOI: 10.1364/AO.444811.
Z. Luo, Z. Yang, X. Chen, C. Ran, J. Huang, Y. Ye, "Separating method for multi-source vibration signals in ultra-weak fiber Bragg grating distributed acoustic sensors", Optical Fiber Technology, 2023, no. 81, p. 103501, DOI: 10.1016/j.yofte.2023.103501.
Z. Luo, Z. Yang, B. Lu, B. Xu, J. Huang, “Modular DAS demodulation system based on ultra-weak fibre Bragg grating”, J. Instrum., 2022, no. 17(10), p. 10037, DOI: 10.1088/1748-0221/17/10/P10037.
D. Chen, Q. Liu, and Z. He, "Distributed fiber-optic acoustic sensor with sub-nano strain resolution based on time-gated digital OFDR", Asia Communications and Photonics Conference, Guangzhou(China), 2017, p. S4A.2.
S. Wang, X. Fan, Q. Liu, and Z. He, "Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR," Opt. Express, 2015, no. 23(26), pp. 33301-33309.
L. Macedo, E. Pedruzzi, L. Avellar, et al, “High-resolution sensors for mass deposition and low-frequency vibration based on phase-shifted bragg gratings”, IEEE Sensors Journal, 2023, no. 23 (3), pp. 2228-2235, DOI: 10.1109/JSEN.2022.3231434.
I.A. Ershov, O.V. Stukach, N.V. Myasnikova, "Features of the Implementation of the Extremal Filtration Method in the Distributed Optic-Fiber Temperature Sensor", 2021 International Seminar on Electron Devices Design and Production (SED), Czech Republic, Prague, 27-28 April, 2021, IEEE Publisher, 5 p., DOI: 10.1109/SED51197.2021.9444514.
D. Chen, Q. Liu, and Z. He, "Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR," Opt. Express, 2017, no. 25(7), pp. 8315-8325.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Системная инженерия и инфокоммуникации

Это произведение доступно по лицензии Creative Commons «Attribution-ShareAlike» («Атрибуция — На тех же условиях») 4.0 Всемирная.